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Fig. 5. Plot of the current-transfer ratio («,) with variation in the dc bias.
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Fig. 6. Plot of the output conductance (g,) with variation in the dc bias.
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Fig. 7. Plot of the dynamic emitter resistance (R,) with variation in the dc
bias.
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Fig. 8. Plot of the emitter-base diffusion and depletion capacitance (C, +
C,) with variation in the dc bias.
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Fig. 9. Plot of the collector-base junction capacitance (C,) with variation
in the dc bias.

saturation, as [, increases, V,, decreases and since ¥V, is small, the
increase in junction capacitance is significant.

IV. ConNcLusiON

A small signal model has been fitted to S parameter measure-
ments of an inverted InGaAs /InAlAs /InP heterojunction bipolar
transistor. The fit was determined over a set of bias values covering
the entire useful range of the I-V characteristics. As a result of this
measurement and modeling effort, it is clear that consideration of.
the bias variation of only five intrinsic elements is sufficient to ob-
tain a model valid over a large bias range. Further work on the
contribution of each bias dependent element to the overall inter-
modulation distortion and harmonic distortion is in progress.
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On the Representational Nonuniqueness of Uniform
Waveguide Eigenvalue Formulas

P. L. Overfelt

Abstract—In the following, we find that for uniform perfectly con-
ducting waveguides characterized by rectilinear boundaries and exact
eigenvalue formulas, such formulas are not representationally unique.
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They are specific examples of general homogeneous polynomials of de-
gree p in q variables, known as g-ary, p-ic forms. Using the concepts
of equivalence and congruence, we find that an infinite number of ei-
genvalue formulas (that are members of an equivalence or congruence
class) may be associated with a given waveguide cross section.

I. INTRODUCTION

Recently it was pointed out that the eigenvalues (or cutoff wave
numbers) of a perfectly conducting uniform waveguide with a
30-60° right triangular cross section can be written in the form [1]

_ 47?

k2 = — (M? + MN + N?) | Q-

- 3a12

where M, N are integers (M, N € Z) and a’ is the side length along
the x-axis. A different formula for this waveguide, obtained from
the superposition of plane waves technique, has the form

‘ll'2
k2 = —5 (3m® + n?) )
3a

where m, n € Z and the additional restrictions (m + #n) and
(m — n) are both even [2].

We have observed similar situations for the uniform perfectly
conducting equilateral triangular waveguide [2]-[5] and the isos-
celes right triangular waveguide [2], [6]. From these observations,
one might conclude that the nonuniqueness represented by (1) and
(2) is a consequence of the nonorthogonal nature of triangular ge-
onietries. However, we will show that for uniform perfectly con-
ducting waveguides with boundaries that are convex and rectilinear
(i.e., composed of straight lines and a finite number of corners),
the exact expression for the eigenvalues is not unique. In particu-
lar, we will show that an infinite number of eigenvalue formulas
can be associated with a given waveguide cross section and that all
of them produce identical sets of eigenvalues. Eigenvalue formulas
for the above type of waveguides are specific examples of general
g-ary, p-ic forms, which are homogeneous polynomials of degree
p in q variables. In particular, all of the known eigenvalue expres-

sions for the above class of waveguides are binary quadratic forms,

(71, [8].

II. EiGENVALUE FORMULAS AND BINARY QUADRATIC FOorRMS

In the following, all waveguides are assumed to be uniform and
perfectly conducting with z, ¢-dependence given by exp (—ik,z +
iwt). Thus we reduce the three-dimensional problem to a two-
dimensional one, and the eigenfunctions and eigenvalues are de-
termined by the geometry of the waveguide cross section only. Also
all cross section boundaries are assumed to be convex and rectilin-
ear. Within this class of waveguides, some possess closed form
expressions for their eigenvalues. Using the simplest example, the
rectangular waveguide, we know that this boundary is character-

ized by the formula
mw\ nr\?
2 - (2 e
kc <a, > * <b,> ’ ! (3)

m, n € Z. Equation (3) is a specific example of a binary quadratic
form that can be written generally as (see Appendix for more gen-
eral definitions)

f@m, ny = am® + bmn + cn’® @)

where m, n € Z. A binary quadratic form is characterized by its
coefficients as being real if a, b, c are real (i.c., a, b, c € R),
rational if a, b, c are rational numbers (a, b, ¢ € @), or integral if

a, b, c € Z. We refer to m and n as the variables of the form and,
in this case, f(m, n) has integral variables.
If we perform a nonsingular linear transformation on (4) using

=G0
n v 6 n
then its inverse is ‘
m' 1 6 —8 m
(-3 0)G) e

with D = aé — By # 0. .

To guarantee that both (m, n) and (m', n') are always integers,
we must require that o, 3, v, 6 € Z and restrict D to +1. The set
of all two-by-two matrices with integer elements and unit deter-
minants is called the unimodular group, and it is a multiplicative
infinite group.

If o, B, v, & are integers but D is not +1, then the transformation
will be integral in one direction but its inverse may not be integral.
Once we have set up (5) and (6) so that both (m, n) and (m’, n')
are integers, we can always find an f,(m', n') = R if fi(m, n) =
h. Two forms with integer coefficients related by linear transfor-
mations with integer elements having this property are called
equivalent ( fi ~ f,), and there is no need to consider such forms
individually. Applying the concepts of equivalence and congruence
to eigenvalue formulas, it is obvious that there can be more than
one eigenvalue formula associated with a given waveguide cross
section. Thus mode nomenclature is entirely dependent upon the
particular form used.

We introduce the following material that will be used to decide
when two forms are equivalent (for congruence, see Appendix).
We define the matrix of a form (as in (4)) as

2 2
F 2 Y]
b
2
and the discriminant of a form as
A = 4ac — b® = 4|F|. C®

We will assume that the forms of interest are positive definite,
meaning that A > Oanda > 0.IfA > Oanda > 0, thenc > 0
also, and thus the polynomial associated with a given positive def-
inite binary quadratic form is

at® + bt + ¢ ©)
and has either complex or pure imaginary zeroes, given by
b VA
Pt —— —. 10
¢ 2a = 2a (10

The zero with positive imaginary part, w?, is called the represen-
tative of f (m, n) in (4). f(m, n) is in “‘reduced form’’ [7] if and
only if either

1) —asb=a<c (11a)
or

20=b=sa=c (11b)

Using the above concepts and definitions, we can state that if two
binary quadratic forms are equivalent, then

1) They must have equal discriminants and
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2) When put into reduced form, their reduced forms are iden-
tical.

Condition (1) alone is necessary but not sufficient.
Consider the example of a square waveguide with side length =.
Its eigenvalue formula is

k.)? = m? + n%  m, neZ. (12)
The matrix of this form is
F o= <1 O>; |Fi| =1 (13)
01

with A = 4 and ™ = i. Equation (12) satisfies (11b) and thus is
already in reduced form. However, the eigenvalues in (12) could
be determined from

*2) = k* + 24l + 217 (14)
with k, [ € Z, or by
k) =i — 2 + 2%, (15)
i, j € Z. The matrix of (14) is
Fz=<1 1>; Pl =1 (16
12
with A = 4, and w* = —1 + i. The matrix of (15) is
F3=< ! _1>; IF;| =1 7
-1 2

withA =4, and @™ =1 + i.

When (14) and (15) are put into their reduced forms, they are
identical to (12). Thus (12), (14), and (15) are equivalent and they
are members of an equivalence class. We are now free to consider
any member of the class as a means of obtaining the eigenvalues
of the square waveguide of side length «. In general, the set of all
positive definite binary forms splits up into equivalence classes with
any two members of the same class being equivalent and members
from different classes being inequivalent. Thus the resulting eigen-
values and the discriminant are invariants that characterize a given
equivalence class.

For the example of a square waveguide with side length =, the
associated equivalence class of integral binary quadratic forms is
infinite. Using (7) and (8), this class can be characterized by

1 b,
= , 18
() @)
Gl =c—b2=1 19)
where b, = b/2. Then
c=1+ b2 20)

and this condition can be fulfilled by an infinite number of integer
b,’s and ¢’s.

1. GEOMETRIC INTERPRETATION

At this point, it is desirable to give a geometric interpretation of
the forms in Part II. To do this, we introduce the fundamental in-
teger lattice [9] defined to be a square lattice with unit lengths be-
tween intersection points and intersection points at integral values
of the orthogonal coordinates. Any binary quadratic form can be
written as

fn,ny = am® + bmn + cn? =K @2n
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Fig. 2. Contour lines for the eigenvalue formula in (14).

where m, n, a, b, ¢, K € R, and K is a constant representing a
second-degree curve {conic) with its center at the origin (m = 0,
n = 0). In Figs. 1-3, we show contour lines of (12), (14), and
(15), respectively. To obtain continuous contour lines, we have
allowed m and n to be real, but for each form the actual eigenvalues
occur at those points where the contour lines intersect a lattice point
of the fundamental integer lattice. For the previous simple example
of the square waveguide, we have (k.)2, = m? + n? whose contour
lines (if m and n are allowed to be real) are circles and whose
integral values occur when the circles intersect the lattice points.
The cutoff wave numbers are given by the radii of those circles that
intersect one or more lattice points. There can exist circles of given
radii, for which none of the points intersect any lattice point. For
this particular example, if (k.)*> = 3 (mod 4) [10], then circles with
radii equal to V3,47, V11 , etc. never intersect any fundamental
integer lattice points; whereas, if (k) = 1 (mod 4), then circles
with radii equal to V1 s NG S NG s V13 , etc. always intersect at least
one integer lattice point.

In general, for (21), if a = c and b = 0, the contour lines of the
resulting form are circles. If @ # ¢ and b = 0, the contours are
ellipses that have semimajor and semiminor axes lined up with the
fundamental integer lattice. If a # c and b # 0, the contours are
ellipses that are tilted with respect to the lattice. If b > 0, the
contours are tilted in the counter-clockwise direction (if a > ¢).
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Fig. 3. Contour lines for the eigenvalue formula in (15).

If b < 0, the contours are tilted in the clockwise direction (if
a > ¢). We see from Figs. 2 and 3 that the contours of (14) and
(15) are orthogonal to one another. The tilt angle is found by start-
ing with a form in which the cross-term is present and then rotating
so that the cross-term in the new system is eliminated. Thus, the
tilt angle of the contour lines with respect to the fundamental in-
teger lattice is given by

> . 22)

1
0 = Etal‘l_1 (a i

IV. 30-60° RiGHT TRIANGULAR WAVEGUIDE

Taking a’, the side length, in (1) and (2) as a'? = 41r2/3, 1)
and (2) become

k)iy = M* + MN + N*? 23)

and

k)2, = 2m? + n? 4
Obviously these two forms cannot be equivalent since the coeffi-
cients of (24) are rational, not integer. However, as stated in the
Appendix, if two forms with rational coefficients are related by a
nonsingular linear transformation with rational elements, the forms
are rationally congruent. In this case, we can transform (24) into

e

or in matrix form, % = TM, where |T| = —2. T is not a member
of the unimodular group since its determinant is not +1. The in-

verse of (25) is
M>_1<1 1 mB
N/ *\1 -1/ \n/’

Tand T ™! form a linear transformation with rational elements. Thus
(23) and (24) .are rationally congruent. However, in order for
(k)3 and (k,)%, to be identical in value for all M, N & Z and all m,
n € Z, something must be added. If we begin by allowing
M, N to be any integers, then (kc)iy will be integer also. But, if m
is an even integer and n is an odd integer or vice versa, then
(ke),, will not be integer. This is why the auxiliary restriction
(m + n) even, (m — n) even occurs in [2]. This implies that m and

@3)

(26)

1017

n must both be even or they must both be odd. If m = 2/ and n =

21,1, 1I' € Z, then
_ I+
=0

RIS

andifm=2l—-1,n=2l" —1,1,1' € Z, then

M\ (1 1> 20 — 1 I+ ~1 -
N/ *\1 -1/ \ar -1 -1 @8)

from which M, N are now guaranteed to be integer once m and n
are restricted. Thus (23) and (24) are rationally congruent forms,
and the auxiliary condition allows them to give identical sets of
eigenvalues because it ensures that the transformation and its in-
verse are both integral. ‘

@7

I

V. CONCLUSION

We have shown that for certain types of uniform waveguides
characterized by rectilinear boundaries, their closed form eigen-
value formulas are not representationally unique. Such formulas
are specific examples of general homogeneous polynomials of de-
gree p in g variables. All such known expressions turn out to be
binary quadratic forms. Using the concepts of equivalence and con-
gruence, we have shown that an infinite number of eigenvalue for-
mulas (that are members of an equivalence or congruence class)
can be associated with a given waveguide cross section.

APPENDIX
Q-ARY QUADRATIC FORMS AND CONGRUENCE

Let
q q
s = Z] a;x;x, and t = > b,y

ij= Ly=1

(A1

be two g-ary quadratic forms with real variables (x;, x;) and
(¥:> ¥;), and real coefficients a; and b;. Assume that a; = a,,
b, = b, forall i, j. If a nonsingular linear transformation

q
5= B Viyy i=1200. A2)
with real coefficients, V;;, transforms s into ¢, then s and ¢ are called
congruent forms and s is congruent to ¢ (s = £). Thus two congruent
forms represent the same set of numbers (i.e., take on the same
values) as the variables take on all real values. If it is possible to
obtain a set of values of y; making ¢ = P, then via (A2) one can
obtain a set of values of x; making s = P, and the inverse of (A2)
will transform ¢ into s. This correspondence between x, and y; is
one-to-one. If we are concerned with the values represented by the
quadratic forms rather than the forms themselves, then we need to
consider only one out of a class of congruent forms.

Equations (A1) and (A2) hold for variables, coeflicients, and
transformation elements that are all real numbers. However, these
forms are called rationally congruent when two forms with rational
coefficients can be transformed into each other by linear transfor-
mations with rational elements. If two forms with integral coeffi-
cients can be taken into each other by transformations with integral
elements, these forms are called equivalent. The variables x, and y;
can be real, rational, or integral also.
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Effects of Misalignment on Propagation
Characteristics of Transmission Lines
Printed on Anisotropic Substrates

T. Q. Ho and B. Beker

Abstract—The spectral-domain method is applied to study the prop-
agation characteristics of grounded transmission lines on biaxial sub-
strates whose axes are misaligned with those of the line. The three
structures under investigation are the grounded slotline, micreostrip,
and the edge coupled line. The formulation derives an expression for
the Green’s function that is valid for substrates which are simultane-
ously characterized by both their permittivity and permeability ten-
sors. The off-diagonal elements of the permittivity tensor, present due
to the misalignment of the axes, are used to examine the dispersion
properties of these transmission lines with numerous case-studies pre-
sented for different angles of rotation.

I. INTRODUCTION

Recently, transmission lines on anisotropic materials have be-
come increasingly more attractive in microwave and millimeter-
wave integrated circuit applications. Different types of guiding
structures such as the microstrip line, coupled line, finline, and
slotline on simple anisotropic substrates have been extensively
studied by numerous authors in the past. Since the early work on
microstrips printed on sapphire substrates, which was presented by
Owens et al. [1], many other transmission lines on such materials
have also been examined in detail. Included among these studies
is an open sidewall microstrip which was analyzed by the hybrid
mode approach, described by El-Sherbiny [2]. In addition, propa-
gation characteristics of single as well as coupled lines on planar
anisotropic layers were also examined via the method of moments,
as documented by Alexopoulos et al. [3]. Other researchers, such
as Nakatani et al. [4], have extended the full-wave analysis to study
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suspended structures, while Yang et al. [5] have examined the dis-
persive properties of a finline. In all of the aforementioned works,
however, the anisotropy of a substrate was represented by a diag-
cnal permittivity tensor only.

Up until now, there have been only a few studies dealing with
effects of misalignment between the axes of the substrate and those
of the waveguide on the dispersive characteristics of transmission
lines printed on anisotropic materials. Mathematically, such effects
are included by the presence of the off-diagonal elements in the
permittivity tensor. Most of the research efforts, thus far, have been
primarily focused on open transmission lines, with the most gen-
eral treatment available in [6]. Therein, Tsalamengas et al. have
considered an open microstrip line with a substrate which is char-
acterized by generalized [e] and [p] tensors. In their analysis they
used a complicated semi-analytical method; however, they did not
provide any numerical results for the effects of misalignment on
the dispersive properties of the structure. On the other hand, for
shielded structures, and specifically for edge coupled lines on a
boron nitride, Mostafa et al. [7] used a full-wave solution to cal-
culate their dispersion properties for dominant as well as higher
order modes.

In this paper, a full-wave analysis applying the spectral-domain
technique is used to analyze the effects of misalignment on the
propagation characteristics of grounded slotlines, microstrip line,
and edge coupled lines printed on biaxial substrates. The material
can be characterized simultaneously by both permittivity and
permeability tensors, with the rotation of the principal axes re-
stricted to the permittivity tensor alone. Numerical results for var-
ious transmission lines are examined in detail with respect to dif-
ferent physical dimensions of the structure, substrate parameters,
and angles of rotation of the principal axes of the permittivity ten-
sor.

II. THEORY

The specific transmission line structures under consideration are
shown in Figs. 1, 2, and 3 along with the coordinate system used
to formulate the problem. All metal strips are assumed to be per-
fectly conducting and infinitely thin. The substrate, whose thick-
ness is h;, is lossless and is characterized by its permittivity and
permeability tensors

€x €y O e O O
[l =¢|ex & O and [Wl=p,| 0 p, O
0 0 e, 0 0 p,
(1a)
with elements of the relative [e] given by
€ = € sin’ (8) + ¢ cos’ (0),
€y = € cos” (§) + ¢, sin’ (0)
€z = €3,
€y = €y = (€2 — €) sin (6) cos (0), (1b)

where ¢, and p, are the free-space permittivity and permeability,
respectively. The angle 0 is the rotation angle of the x and y prin-
cipal axes of the tensor with respect to the x and y coordinate axes
of the structure about the common z-axis.

The vector wave equations for the components of the electric and
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